Data-Driven Learning of Q-Matrix.

نویسندگان

  • Jingchen Liu
  • Gongjun Xu
  • Zhiliang Ying
چکیده

The recent surge of interests in cognitive assessment has led to developments of novel statistical models for diagnostic classification. Central to many such models is the well-known Q-matrix, which specifies the item-attribute relationships. This article proposes a data-driven approach to identification of the Q-matrix and estimation of related model parameters. A key ingredient is a flexible T-matrix that relates the Q-matrix to response patterns. The flexibility of the T-matrix allows the construction of a natural criterion function as well as a computationally amenable algorithm. Simulations results are presented to demonstrate usefulness and applicability of the proposed method. Extension to handling of the Q-matrix with partial information is presented. The proposed method also provides a platform on which important statistical issues, such as hypothesis testing and model selection, may be formally addressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing and Validating a Q-Matrix for Cognitive Diagnostic Analysis of a Reading Comprehension Test Battery

Of paramount importance in the study of cognitive diagnostic assessment (CDA) is the absence of tests developed for small-scale diagnostic purposes. Currently, much of the research carried out has been mainly on large-scale tests, e.g., TOEFL, MELAB, IELTS, etc. Even so, formative language assessment with a focus on informing instruction and engaging in identification of student’s strengths and...

متن کامل

Concordance-Based Data-Driven Learning Activities and Learning English Phrasal Verbs in EFL Classrooms

In spite of the highly beneficial applications of corpus linguistics in language pedagogy, it has not found its way into mainstream EFL. The major reasons seem to be the teachers’ lack of training and the unavailability of resources, especially computers in language classes. Phrasal verbs have been shown to be a problematic area of learning English as a foreign language due to their semantic op...

متن کامل

The Influence of Data-Driven Exercises Through Using a Computer Program on Vocabulary Improvement in an EFL Context

The present study was conducted to evaluate data driven learning (DDL) combined with Computer Assisted Language Learning (CALL) as an approach to improving vocabulary knowledge of Iranian postgraduates majoring in teaching English, English literature and translation. The purpose was to help language learners get familiar with DDL as a student-centered method taking advantage of a computer progr...

متن کامل

The Influence of Data-Driven Exercises Through Using a Computer Program on Vocabulary Improvement in an EFL Context

The present study was conducted to evaluate data driven learning (DDL) combined with Computer Assisted Language Learning (CALL) as an approach to improving vocabulary knowledge of Iranian postgraduates majoring in teaching English, English literature and translation. The purpose was to help language learners get familiar with DDL as a student-centered method taking advantage of a computer progr...

متن کامل

Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining

This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied psychological measurement

دوره 36 7  شماره 

صفحات  -

تاریخ انتشار 2012